Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α x= exp (xβ yγ) be the solution of the differential equation 2 x2 y d y-(1-x y2) d x=0, x >0, y(2)=√ log e 2. Then α+β-γ equals :
Q. Let
αx
=
exp
(
x
β
y
γ
)
be the solution of the differential equation
2
x
2
y
d
y
−
(
1
−
x
y
2
)
d
x
=
0
,
x
>
0
,
y
(
2
)
=
lo
g
e
2
. Then
α
+
β
−
γ
equals :
1562
123
JEE Main
JEE Main 2023
Differential Equations
Report Error
A
0
B
-1
C
1
D
3
Solution:
αx
=
e
x
β
⋅
y
γ
2
x
2
y
d
x
d
y
=
1
−
x
⋅
y
2
y
2
=
t
x
2
d
x
d
t
=
1
−
x
t
d
x
d
t
+
x
t
=
x
2
1
I.F.
=
e
ℓ
n
x
=
x
t
(
x
)
=
∫
x
2
1
⋅
x
d
x
y
2
⋅
x
=
ℓ
n
x
+
C
∴
2
⋅
ℓ
n
2
=
ℓ
n
2
+
C
∴
C
=
ℓ
n
2
Hence,
x
y
2
=
ℓ
n
2
x
∴
2
x
=
e
x
⋅
y
2
Hence
α
=
2
,
β
=
1
,
γ
=
2