Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α= tan -1(1)+(1/2) tan -1(2)+(1/3) tan -1(3) and β= cot -1(1)+2 cot -1(2)+3 cot -1(3), then
Q. Let
α
=
tan
−
1
(
1
)
+
2
1
tan
−
1
(
2
)
+
3
1
tan
−
1
(
3
)
and
β
=
cot
−
1
(
1
)
+
2
cot
−
1
(
2
)
+
3
cot
−
1
(
3
)
, then
1301
124
Inverse Trigonometric Functions
Report Error
A
6
α
−
cot
−
1
3
=
4
13
π
B
β
−
cot
−
1
3
=
4
3
π
C
6
α
−
β
=
2
5
π
D
6
α
+
β
=
4
π
Solution:
6
α
=
6
⋅
4
π
+
3
tan
−
1
2
+
2
tan
−
1
3
∴
6
α
−
cot
−
1
3
=
2
3
π
+
3
⋅
4
3
π
−
2
π
=
π
+
4
9
π
=
4
13
π
and
β
−
cot
−
1
3
=
4
π
+
4
2
π
=
4
3
π
.