Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α(t) and β(t) be differentiable functions on R such that α(0)=2 and β(0)=1. If α(t)+β prime(t)=1 and α prime(t)+β(t)=1 for all t ∈[0, ∞), then the value of α( ln 2) is expressed in the lowest form as (p/q). Find the value of (p-q).
Q. Let
α
(
t
)
and
β
(
t
)
be differentiable functions on R such that
α
(
0
)
=
2
and
β
(
0
)
=
1
. If
α
(
t
)
+
β
′
(
t
)
=
1
and
α
′
(
t
)
+
β
(
t
)
=
1
for all
t
∈
[
0
,
∞
)
, then the value of
α
(
ln
2
)
is expressed in the lowest form as
q
p
​
. Find the value of
(
p
−
q
)
.
213
94
Differential Equations
Report Error
Answer:
5
Solution:
α
(
t
)
+
β
′
(
t
)
=
1
....(1)
α
′
(
t
)
+
β
(
t
)
=
1
....(2)
Add (1) and (2)
(
α
+
β
)
+
(
α
′
+
β
′
)
=
2
∴
(
α
+
β
)
+
(
α
+
β
)
′
=
2
(
α
+
β
)
=
y
∴
d
t
d
y
​
+
y
=
2
 I.F.Â
=
e
t
y
â‹…
e
t
=
2
e
t
+
C
(
α
(
t
)
+
β
(
t
))
e
t
=
2
e
t
+
C
 PutÂ
t
=
0
2
+
1
=
2
+
C
C
=
1
∴
α
(
t
)
+
β
(
t
)
=
2
+
e
−
t
....(3)
|||ly
(
1
)
−
(
2
)
(
α
−
β
)
−
(
α
−
β
)
′
=
0
(
α
−
β
)
′
−
(
α
−
β
)
=
0
d
t
d
y
​
−
y
=
0
 I.F.Â
=
e
−
t
y
e
−
t
=
C
y
=
C
e
t
α
(
t
)
−
β
(
t
)
=
C
e
t
 PutÂ
t
=
0
2
−
1
=
C
∴
C
=
1$
<
b
r
/
>
\alpha( t )-\beta( t )= e ^{ t }
.....
(
4
)
<
b
r
/
>
\therefore
P
u
t
t =\ln 2
in
(
3
)
&
(
4
)
an
d
a
dd
<
b
r
/
>
2 \alpha(\ln 2)=2+\frac{1}{2}+2=4+\frac{1}{2}=\frac{9}{2}
<
b
r
/
>
\alpha(\ln 2)=\frac{9}{4}=\frac{p}{q}
<
b
r
/
>
\therefore p-q=9-4=5$