Since, α,β,γ are the roots of the equation x3+x+10=0 ∴α+β+γ=0......(i)
Now, α1=γ2α+β=γ2−γ=γ−1
Similarly, β1=α−1 and γ1=β−1 ∴α1,β1,γ1 are the roots of equation f(x−1)=0.
Now, f(x−1) will be (−x1)3+(−x1)+10=0 ⇒10x3−x2−1=0 ⇒10α13−α12−1=0 ⇒α13=101α12+101 ⇒Σα13=101Σα12+Σ101 ⇒Σα13−101Σα12=103 ∴(α13+β13+γ13)−101(α12+β12+γ12)=103