Q.
Let α,β,γ be the roots of the cubic x3+ax2+bx+c=0, which (taken in given order) are in G.P.
If α and β are such that ∣∣21+α4−β1α3−β2βα+1∣∣=0, then
The value of a+b+c equals
c1→c1−c2,c2→c2−c1,c3→c3−2c1 ∣∣21+α4−β1α3−β2βα+1∣∣=∣∣1111α3−β2βα+1∣∣=∣∣1110α−12−β0β−2α−1∣∣ =(α−1)2+(β−2)2=0⇒α=1,β=2,γ=4 ∴ the cubic equation is x3−7x2+14x−8=0