Q.
Let α and β be two distinct roots of acosθ+bsinθ=c, where a,b,c are three real constants and θ∈[0,2π]. Then, α+β is also a root of the same equation, if
2147
196
WBJEEWBJEE 2015Complex Numbers and Quadratic Equations
Report Error
Solution:
Given equation is acosθ+bsinθ=c ⇒α(1+tan22θ1−tan22θ)+1+tan22θ2btan2θ=c [∵cosθ=1+tan22θ1−tan22θ and sinθ=1+tan22θ2tan2θ] ⇒a(1−tan22θ)+2btan2θ =c(1+tan22θ) ⇒a−atan22θ+2btan2θ−c−ctan22θ=0 ⇒(c+a)tan22θ−2btan2θ+(c−a)=0
Let α and β be the roots of the equation. ∴α+β=c+a2b and αβ=c+ac−a
Now, tan2α+β=1−c+ac−ac+a2b =c+ac+a−c+ac+a2b=ab
Since, ab is a root of the equation. ∴(c+a)a2b2−2b(ab)+c−a=0 ⇒b2c+b2a−2b2a+ca2−a3=0 ⇒−b2a+b2c+ca2−a3=0 ⇒b2c−b2a+ca2−a3=0 ⇒b2(c−a)+a2(c−a)=0 ⇒(c−a)(b2+a2)=0 ⇒c−a=0 or b2+a2=0 ⇒c=a or b2+a2=0