Q.
Let α,β be the roots of x2−x+p=0 and γ, δ be the roots of x2−4x+q=0. If α,β,γ,δ are in G.P. then the integral values of p and q respectively, are
408
123
Complex Numbers and Quadratic Equations
Report Error
Solution:
We have α+β=1,αβ=p, γ+δ=4,γδ=q
Let r be the common ratio of the GP α,β,γ,δ. Then α+β=1⇒α+αr=1⇒α(1+r)=1 γ+δ=4⇒αr2+αr3=4 ⇒αr2(1+r)=4 Thus, α(1+r)αr2(1+r)=4⇒r2=4⇒r=±2 When α(1+r)r=2 we get α(1+r)=1⇒α=1/3 In this case p=αβ=α(αr)=α2r =91(2)=92
which is not an integer.
Thus, r=−2. In this case, α(1+r)=1⇒α=−1. ∴p=α2r=(−1)2(−2)=−2 and q=γδ=(αr2)(αr3)=α2r5=−32 Hence, p=−2,q=−32.