Given that, sinα+sinβ=−6521 ...(i) and cosα+cosβ=−6527 ...(ii) Squaring Eqs. (i) and (ii) and then adding, we get (sinα+sinβ)2+(cosα+cosβ)2=(−6521)2+(−6527)2sin2α+sin2β+2sinαsinβ+cos2α+cos2β+2cosαcosβ=42251170⇒2+2(cosαcosβ+sinαsinβ)=42251170⇒2+2cos(α−β)=42251170⇒2[1+cos(α−β)]=42251170⇒2[2cos2(2α−β)]=42251170⇒cos2(2α−β)=4×42251170⇒cos2(2α−β)=1309⇒cos(2α−β)=−1303(∵π<α−β<3π)