Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α, β are the roots of the quadratic equation ax 2+ bx + c =0 where β=4 α(α>0). If 3 a=2(c-b) and S= displaystyle∑r=0∞ β(αr), then find the value of 18 S.
Q. Let
α
,
β
are the roots of the quadratic equation
a
x
2
+
b
x
+
c
=
0
where
β
=
4
α
(
α
>
0
)
. If
3
a
=
2
(
c
−
b
)
and
S
=
r
=
0
∑
∞
β
(
α
r
)
, then find the value of
18
S
.
168
122
Sequences and Series
Report Error
Answer:
24
Solution:
5
α
=
a
−
b
and
4
α
2
=
a
c
∴
b
=
−
5
a
α
and
c
=
4
a
α
2
Now
3
a
=
2
(
c
−
b
)
3
a
=
2
(
4
a
α
2
+
5
a
α
)
∴
8
α
2
+
10
α
−
3
=
0
α
=
4
1
or
α
=
2
−
3
(rejected)
hence
β
=
1
Now
S
=
β
(
1
+
α
+
……
.
+
∞
)
S
=
1
−
α
β
=
1
−
4
1
1
=
3
4
18
S
=
24