Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α ,β are the roots of the equation ax2+bx+c=0 where β =4α (.α >0.) . If 3a=2(.c-b.) and S= displaystyle ∑ r = 0∞ β ((α )r) , then find the value of 3S .
Q. Let
α
,
β
are the roots of the equation
a
x
2
+
b
x
+
c
=
0
where
β
=
4
α
(
α
>
0
)
. If
3
a
=
2
(
c
−
b
)
and
S
=
r
=
0
∑
∞
β
(
(
α
)
r
)
, then find the value of
3
S
.
198
176
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
4
Solution:
∵
3
=
2
(
a
c
−
a
b
)
⇒
3
=
2
(
4
α
2
+
5
α
)
⇒
8
α
2
+
10
α
−
3
=
0
⇒
8
α
2
+
12
α
−
2
α
−
3
=
0
⇒
(
2
α
+
3
)
(
4
α
−
1
)
=
0
∴
α
=
4
1
⇒
β
=
4
α
=
1
∴
S
=
1
−
α
β
=
1
−
4
1
1
=
3
4
⇒
3
S
=
4