Q. Let $\alpha ,\beta $ are the roots of the equation $ax^{2}+bx+c=0$ where $\beta =4\alpha \left(\right.\alpha >0\left.\right)$ . If $3a=2\left(\right.c-b\left.\right)$ and $S=\displaystyle \sum _{r = 0}^{\infty }\beta \left(\left(\alpha \right)^{r}\right)$ , then find the value of $3S$ .
NTA AbhyasNTA Abhyas 2022
Solution: