Q.
Let α be a positive real number. Let f:R→R and g:(α,∞)→R be the functions defined by f(x)=sin(12πx) and g(x)=loge(ex−eα)2loge(x−α).
Then the value of x→α+limf(g(x)) is ___
x→a+limln(ex−ea)2ln(x−α)(00 form ) ∴ Using Lopital rule, =2x→a+lim(ex−ex1)⋅ex⋅2x1(x−α1)⋅2x1 =ex2x→a+lim(x−α)(ex−ex)(00) =ex2x→a+lim(2x1−0)(ex⋅2x1−0)=2
so, x→a+limf(g(x))=x→a+limf(2) =f(2)=sin6π=21 =0.50