Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α; and β be the roots of x2 â x â 1 = 0, with α > β. For all positive integers n, define an=(αn-βn/α-β), n ge1, b1=1 and bn=αn-1+αn+1, n ge2. Then which of the following options is/are correct?
Q. Let
α
;
and
β
be the roots of
x
2
—
x
—1
=
0
, with
α
>
β
.
For all positive integers n, define
a
n
=
α
−
β
α
n
−
β
n
,
n
≥
1
,
b
1
=
1
and
b
n
=
α
n
−
1
+
α
n
+
1
,
n
≥
2.
Then which of the following options is/are correct?
4482
215
JEE Advanced
JEE Advanced 2019
Report Error
A
a
1
+
a
2
+
a
3
+
−
−
−
−
−
+
a
n
=
a
n
+
2
−
1
for all
n
≥
1
68%
B
n
=
1
∑
∞
1
0
n
a
n
=
89
10
50%
C
b
n
=
α
n
+
β
n
for all
n
≥
1
118%
D
n
=
1
∑
∞
1
0
n
b
n
=
89
8
32%
Solution:
n
=
1
∑
∞
1
0
n
a
n
=
n
=
1
∑
∞
(
α
−
β
)
1
0
n
α
n
−
β
n
=
α
−
β
1
[
n
=
1
∑
∞
(
10
α
)
n
−
n
=
1
∑
∞
(
10
β
)
n
]
=
α
−
β
1
[
1
−
10
α
10
α
−
1
−
10
β
10
β
]
=
α
−
β
1
[
10
−
α
α
−
10
−
β
β
]
=
α
−
β
1
[
100
−
10
β
−
10
α
+
α
β
10
α
−
α
β
−
10
β
+
α
β
]
=
α
−
β
1
[
100
−
10
−
1
10
(
α
−
β
)
]
=
89
10
(
B
)
a
n
+
1
=
α
−
β
α
n
+
1
−
β
n
+
1
=
α
n
+
α
n
−
1
β
+
α
n
−
2
β
2
+
...
+
α
.
β
n
−
1
+
β
n
{
∵
α
β
=
−
1
}
a
n
+
1
=
α
n
−
(
α
n
−
2
+
α
n
−
3
β
+
...
+
β
n
−
2
)
+
β
n
⇒
a
n
+
1
=
α
n
+
β
n
−
a
n
−
1
⇒
a
n
−
1
+
α
n
+
1
=
α
n
+
β
n
⇒
b
n
=
α
n
+
β
n
(
C
)
∵
α
2
=
α
+
1
an
d
β
2
=
β
+
1
α
n
+
2
=
α
n
+
1
+
α
n
an
d
β
n
+
2
=
β
n
+
1
+
β
n
α
n
+
2
−
β
n
+
2
=
(
α
n
+
1
−
β
n
+
1
)
+
(
α
n
−
β
n
)
a
n
+
2
=
a
n
+
1
+
a
n
...
(
i
)
Similarily
a
n
+
1
=
a
n
+
a
n
−
1
...
(
ii
)
a
n
=
a
n
−
1
+
a
n
−
2
...
(
iii
)
____________________
____________________
a
3
=
a
2
+
a
1
On adding
a
n
+
2
=
(
a
1
+
a
2
+
a
3
+
...
+
a
n
)
+
a
2
(
Here
a
2
=
α
+
β
=
1
)
a
n
+
2
−
1
=
a
1
+
a
2
+
a
3
+
.......
+
a
n
n
=
1
∑
∞
1
0
n
b
n
=
n
=
1
∑
∞
1
0
n
α
n
+
β
n
n
=
1
∑
∞
(
10
α
)
n
+
n
=
1
∑
∞
(
10
β
)
n
=
1
−
10
α
10
α
+
1
−
10
β
10
β
∵
∣
∣
10
α
∣
∣
<
1
∣
∣
10
β
∣
∣
<
1
=
10
−
α
α
+
10
−
β
β
=
(
10
−
α
)
(
10
−
β
)
10
α
−
α
β
+
10
β
−
α
β
=
100
−
10
(
α
+
β
)
α
β
10
(
1
)
−
2
(
−
1
)
=
89
12