Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α and β be the roots of x2-3 x+p=0 and γ and δ be the roots of x2-6 x+q=0. If α β, γ, δ form a geometric progression. Then ratio (2 q+p):(2 q-p) is
Q. Let
α
and
β
be the roots of
x
2
−
3
x
+
p
=
0
and
γ
and
δ
be the roots of
x
2
−
6
x
+
q
=
0
. If
α
β
,
γ
,
δ
form a geometric progression. Then ratio
(
2
q
+
p
)
:
(
2
q
−
p
)
is
2404
216
JEE Main
JEE Main 2020
Sequences and Series
Report Error
A
3: 1
16%
B
33: 31
13%
C
9: 7
68%
D
5: 3
3%
Solution:
x
2
−
3
x
+
p
=
0
<
β
α
α
,
β
,
γ
,
δ
in G.P.
α
+
α
=
3
…
(1)
x
2
−
6
x
+
q
=
0
<
δ
γ
α
r
2
+
α
r
3
=
6
…
(
2
)
(
2
)
÷
(
1
)
r
2
=
2
So
,
2
q
−
p
2
q
+
p
=
2
r
5
−
r
2
r
5
+
r
=
2
r
4
−
1
2
r
4
+
1
=
7
9