Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α and β be the roots of the quadratic equation x2 sin θ - x ( sin θ cos θ + 1) + cos θ = 0 ( 0 < θ < 45° ), and α < β . Then displaystyle∑∞n = 0 ( αn + (( -1)n/βn)) is equal to :
Q. Let
α
and
β
be the roots of the quadratic equation
x
2
sin
θ
−
x
(
sin
θ
cos
θ
+
1
)
+
cos
θ
=
0
(
0
<
θ
<
4
5
∘
)
,
and
α
<
β
. Then
n
=
0
∑
∞
(
α
n
+
β
n
(
−
1
)
n
)
is equal to :
4462
185
JEE Main
JEE Main 2019
Sequences and Series
Report Error
A
1
−
c
o
s
θ
1
+
1
+
s
i
n
θ
1
49%
B
1
+
c
o
s
θ
1
+
1
+
s
i
n
θ
1
17%
C
1
−
c
o
s
θ
1
−
1
+
s
i
n
θ
1
18%
D
1
+
c
o
s
θ
1
−
1
−
s
i
n
θ
1
16%
Solution:
D
=
(
1
+
sin
θ
cos
θ
)
2
−
4
sin
θ
cos
θ
=
(
1
−
sin
θ
cos
θ
)
2
⇒
roots are
β
=
cos
ec
θ
and
α
=
cos
θ
⇒
∑
n
=
0
∞
(
α
n
+
(
−
β
1
)
n
)
=
∑
n
=
0
∞
(
cos
θ
)
n
+
∑
n
=
0
n
(
−
sin
θ
)
n
=
1
−
c
o
s
θ
1
+
1
+
s
i
n
θ
1