Q. Let $\alpha$ and $\beta$ be the roots of the quadratic equation $x^2 \; \sin \; \theta - x (\sin \; \theta \, cos \theta + 1) + \cos \theta = 0 \; ( 0 < \theta < 45^{\circ} ),$ and $\alpha < \beta $ . Then $\displaystyle\sum^{\infty}_{n = 0} \left( \alpha^n + \frac{( -1)^n}{\beta^n}\right)$ is equal to :
Solution: