Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α and β be the roots of the equation x2-5 x+5=0. If b=(α/β)+(β/α) and t=x2-4 x+3 b-(1/5)+(1/x2-4 x+9), x ∈ R then
Q. Let
α
and
β
be the roots of the equation
x
2
−
5
x
+
5
=
0
. If
b
=
β
α
+
α
β
and
t
=
x
2
−
4
x
+
3
b
−
5
1
+
x
2
−
4
x
+
9
1
,
x
∈
R
then
93
125
Inverse Trigonometric Functions
Report Error
A
minimum value of
(
b
+
t
)
is 8 .
B
maximum value of
lo
g
1/5
(
t
)
is -1 .
C
range of
y
=
cot
−
1
(
lo
g
5
t
)
is
(
0
,
4
π
]
D
range of
y
=
cot
−
1
(
lo
g
1/5
(
t
)
)
is
[
4
π
,
π
)
.
Solution:
b
=
α
β
α
2
+
β
2
=
α
β
(
α
+
β
)
−
2
α
β
=
5
25
−
10
=
3
t
=
x
2
−
4
x
+
9
−
5
1
+
x
2
−
4
x
+
9
1
t
=
(
x
−
2
)
2
+
5
−
5
1
+
(
x
−
2
)
2
+
5
1
t
min.
=
5
(
at
x
=
2
)
(A) Minimum value of
b
+
t
=
3
+
5
=
8
(B)
lo
g
1/5
5
=
−
1
, maximum
(C)
y
=
cot
−
1
(
lo
g
5
t
)
,
t
≥
5
⇒
lo
g
5
t
∈
[
1
,
∞
)
⇒
cot
−
1
(
lo
g
t
5
)
∈
(
0
,
4
π
]
(D)
y
=
cot
−
1
(
lo
g
1/5
(
t
)
)
lo
g
1/5
t
∈
(
−
∞
,
−
1
]
⇒
cot
−
1
(
lo
g
1/5
(
t
)
)
∈
[
4
3
π
,
π
)