Q.
Let α and β be the roots of the equation x2−3x+3=0. If S is the algebraic sum of the coefficients and T is the term independent of x in ((α+1)x+x(β+1))20, then
((α+1)x+x(β+1))20 S=(α+1+β+1)20=520
For the term independent of x T=20Cr⋅(α+1)20−r⋅x20−r⋅xr(β+1)r 20−2r=0⇒r=10 ∴T=20C10⋅(α+1)10⋅(β+1)10=20C10⋅(αβ+α+β+1)10=20C10⋅710