Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α and β be the roots of the equation 5 x2+6 x-2=0 . If Sn=αn+βn, n=1,2,3 ldots then :
Q. Let
α
and
β
be the roots of the equation
5
x
2
+
6
x
−
2
=
0.
If
S
n
=
α
n
+
β
n
,
n
=
1
,
2
,
3
…
then :
1973
199
JEE Main
JEE Main 2020
Complex Numbers and Quadratic Equations
Report Error
A
5
S
6
+
6
S
5
=
2
S
4
74%
B
5
S
6
+
6
S
5
+
2
S
4
=
0
11%
C
6
S
6
+
5
S
5
+
2
S
4
=
0
4%
D
6
S
6
+
5
S
5
=
2
S
4
11%
Solution:
α
and
β
are roots of
5
x
2
+
6
x
−
2
=
0
⇒
5
α
2
+
6
α
−
2
=
0
⇒
5
α
n
+
2
+
6
α
n
+
1
−
2
α
n
=
0
…
(
1
)
(By multiplying
α
n
)
Similarly
5
β
n
+
2
+
6
β
n
+
1
−
2
β
n
=
0
…
(2)
By adding (1)
&
(
2
)
5
S
n
+
2
+
6
S
n
+
1
−
2
S
n
=
0
For
n
=
4
5
S
6
+
6
S
5
=
2
S
4