Q.
Let α and β be roots of x2−12x−4=0(α>β) and tn=αn−βn∀n∈N, then the value of 6t12t13−4t11 equals
2109
201
Complex Numbers and Quadratic Equations
Report Error
Solution:
α,β(α>β) are roots of x2−12x−4=0 ∴α2−12α−4=0…(i)
and β2−12β−4=0…(ii) ⇒α13−12α12−4α11−0 and β13−12β12−411=0
(On multiplying the above equations by α11 & β11 respectively) ⇒(α13−β13)−12(α12−β12)=4(α11−β11) ⇒t13−12t12=4t11 (∵tn=αn−βn) ⇒6t12t13−4t11=2