Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α and β be real numbers such that -(π/4)<β<0<α<(π/4). If sin (α+β)=(1/3) and cos (α-β)=(2/3), then the greatest integer less than or equal to (( sin α/ cos β)+( cos β/ sin α)+( cos α/ sin β)+( sin β/ cos α))2 is
Q. Let
α
and
β
be real numbers such that
−
4
π
<
β
<
0
<
α
<
4
π
. If
sin
(
α
+
β
)
=
3
1
and
cos
(
α
−
β
)
=
3
2
, then the greatest integer less than or equal to
(
c
o
s
β
s
i
n
α
+
s
i
n
α
c
o
s
β
+
s
i
n
β
c
o
s
α
+
c
o
s
α
s
i
n
β
)
2
is ____
8962
168
JEE Advanced
JEE Advanced 2022
Report Error
Answer:
1
Solution:
α
∈
(
0
,
4
π
)
,
β
∈
(
−
4
π
,
0
)
⇒
α
+
β
∈
(
−
4
π
,
4
π
)
sin
(
α
+
β
)
=
3
1
,
cos
(
α
−
β
)
=
3
2
(
c
o
s
β
s
i
n
α
+
s
i
n
β
c
o
s
α
+
s
i
n
α
c
o
s
β
+
c
o
s
α
s
i
n
β
)
2
(
c
o
s
β
s
i
n
β
c
o
s
(
α
−
β
)
+
s
i
n
α
c
o
s
α
c
o
s
(
β
−
α
)
)
2
=
4
cos
2
(
α
−
β
)
(
s
i
n
2
β
1
+
s
i
n
2
α
1
)
2
=
4
cos
2
(
α
−
β
)
(
s
i
n
2
α
s
i
n
2
β
2
s
i
n
(
α
+
β
)
c
o
s
(
α
−
β
)
)
.....
(1)
=
(
c
o
s
2
(
α
−
β
)
−
c
o
s
2
(
α
+
β
)
)
2
16
c
o
s
4
(
α
−
β
)
s
i
n
2
(
α
+
β
)
×
4
=
(
2
c
o
s
2
(
α
−
β
)
−
1
−
1
+
2
s
i
n
2
(
α
+
β
)
)
2
64
c
o
s
4
(
α
−
β
)
s
i
n
2
(
α
+
β
)
=
64
×
81
16
×
9
1
(
2
×
9
4
−
1
−
1
+
9
2
)
2
1
=
81
×
9
64
×
16
⋅
64
81
=
9
16
[
9
16
]
=
1
Ans.