Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let α>0. If ∫ limits0α (x/√x+α-√x) d x=(16+20 √2/15), then α is equal to :
Q. Let
α
>
0
. If
0
∫
α
x
+
α
−
x
x
d
x
=
15
16
+
20
2
, then
α
is equal to :
1206
123
JEE Main
JEE Main 2023
Integrals
Report Error
A
2
48%
B
2
2
27%
C
4
12%
D
2
12%
Solution:
After rationalising
0
∫
α
α
x
(
x
+
α
+
x
)
0
∫
α
α
1
[
(
x
+
α
)
3/2
−
α
(
x
+
α
)
1/2
+
x
3/2
]
α
1
[
5
2
(
x
+
α
)
5/2
−
α
3
2
(
x
+
α
)
3/2
+
5
2
x
5/2
]
∣
∣
0
α
=
α
1
(
2
5
(
2
α
)
5/2
−
3
2
α
(
2
α
)
3/2
+
5
2
α
5/2
−
5
2
α
5/2
+
3
2
α
5/2
=
α
1
(
5
2
7/2
α
5/2
3
2
5/2
α
5/2
+
3
2
α
5/2
)
=
α
3/2
(
5
2
7/2
−
3
2
5/2
+
3
2
)
=
15
α
3/2
(
24
2
−
20
2
+
10
)
=
15
α
3/2
(
4
2
+
10
)
Now,
15
α
3/2
(
4
2
+
10
)
=
15
16
+
20
2
⇒
α
=
2