- Tardigrade
- Question
- Mathematics
- Let ABC be a triangle with centroid G and incentre I. Statement-1: If GI is parallel to the side CA, then a, b, c are in A.P. because Statement-2: In a triangle, incentre from the angular point A divides the angle bisector in the ratio of a: (b + c) reckoning from the vertex.
Q.
Let ABC be a triangle with centroid G and incentre I.
Statement-1 : If GI is parallel to the side CA, then a, b, c are in A.P.
because
Statement-2 : In a triangle, incentre from the angular point A divides the angle bisector in the ratio of
reckoning from the vertex.
Solution: