Q.
Let ABC be a triangle with A(−3,1) and ∠ACB=θ,0<θ<2π. If the equation of the median through B is 2x+y−3=0 and the equation of angle bisector of C is 7x−4y−1=0 then tanθ is cqual to:
∴M(2a−3,2b+1) lies on 2x+y−3=0 ⇒2a+b=11…….(i) ∵ C lies on 7x−4y=1 ⇒7a−4b=1…(ii) ∴ by (i) and (ii) : a=3,b=5 ⇒C(3,5) ∴mAC=2/3
Also, mCD=7/4 ⇒tan2θ=∣∣1+121432−44∣∣ ⇒tan2θ=21 ⇒tanθ=1−412⋅21=34