Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A = x: x ∈ R, | x | < 2 B = x: x ∈ R, |x - 2| ge 2 and A ∪ B = R- C, then the set C equals
Q. Let
A
=
{
x
:
x
∈
R
,
∣
x
∣
<
2
}
,
B
=
{
x
:
x
∈
R
,
∣
x
−
2∣
≥
2
}
and
A
∪
B
=
R
−
C
, then the set
C
equals
3365
160
Sets
Report Error
A
{
x
:
−
2
<
x
≤
2
}
19%
B
{
x
:
−
2
≤
x
≤
4
}
28%
C
{
x
:
2
≤
x
<
4
}
29%
D
None of these
24%
Solution:
Given :
A
=
{
x
:
x
∈
R
,
∣
x
∣
<
2
}
and
B
=
{
x
:
x
∈
R
,
∣
x
−
2∣
≥
2
}
⇒
A
=
−
2
<
x
<
2
and
B
=
{
x
:
x
∈
R
,
x
−
2
≤
−
2
or
x
−
2
≥
2
}
=
{
x
:
x
∈
R
,
x
≤
0
or
x
≥
4
}
⇒
A
=
]
−
2
,
2
[
&
B
=
(
−
∞
,
0
]
∪
[
4
,
∞
)
Now
A
∪
B
=
(
−
∞
,
2
)
∪
[
4
,
∞
)
=
R
−
[
2
,
4
)
∴
C
=
[
2
,
4
)
i.e.
2
≤
x
<
4