Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A= x ∈, R /|√3 cos x- sin x| ≥ 2,0 ≤ x ≤ 2 π If x1 ∈ A, x2 ∈ A, then (x1/x2)=
Q. Let
A
=
{
x
∈
,
R
/∣
3
cos
x
−
sin
x
∣
≥
2
,
0
≤
x
≤
2
π
}
If
x
1
∈
A
,
x
2
∈
A
, then
x
2
x
1
=
1897
188
TS EAMCET 2018
Report Error
A
23
5
B
17
11
C
11
5
D
23
11
Solution:
We have,
∣
3
cos
x
−
sin
x
∣
≥
2
It is possible only when
3
cos
x
−
sin
x
=
2
or
3
cos
x
−
sin
x
=
−
2
2
3
cos
x
−
2
1
sin
x
=
1
or
2
3
c
o
s
x
−
2
s
i
n
x
=
−
1
cos
(
x
+
6
π
)
=
1
or
cos
(
x
+
6
π
)
=
−
1
x
+
6
π
=
2
π
or
x
+
6
π
=
π
⇒
x
=
6
11
π
or
x
=
6
5
π
∴
Let
x
1
=
6
5
π
and
x
2
=
6
11
π
⇒
x
2
x
1
=
11
5