Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A(x)=[ 0 x-2 x-3 x+2 0 x-5 x+3 x+5 0 ] , then the matrix A(0)(A (0))T is a
Q. Let
A
(
x
)
=
⎣
⎡
0
x
+
2
x
+
3
x
−
2
0
x
+
5
x
−
3
x
−
5
0
⎦
⎤
, then the matrix
A
(
0
)
(
A
(
0
)
)
T
is a
100
182
NTA Abhyas
NTA Abhyas 2022
Report Error
A
null matrix
B
symmetric matrix
C
skew symmetric matrix
D
non singular matrix
Solution:
A
(
0
)
=
⎣
⎡
0
2
3
−
2
0
5
−
3
−
5
0
⎦
⎤
(
A
(
0
)
)
T
=
⎣
⎡
0
−
2
−
3
2
0
−
5
3
5
0
⎦
⎤
=
−
A
(
0
)
⇒
A
(
0
)
is a skew-symmetric matrix
(
A
(
0
)
(
A
(
0
)
)
T
)
T
=
(
(
A
(
0
)
)
T
)
T
(
A
(
0
)
)
T
=
A
(
0
)
(
A
(
0
)
)
T
⇒
A
(
0
)
(
A
(
0
)
)
T
is a symmetric matrix
Also,
∣
∣
A
(
0
)
(
A
(
0
)
)
T
∣
∣
=
(
∣
A
(
0
)
∣
)
2
=
0