Q.
Let a vector a has a magnitude 9. Let a vector b be such that for every (x,y)∈R×R−{(0,0)}, the vector (xa+yb) is perpendicular to the vector (6ya−18xb). Then the value of ∣a×b∣ is equal to:
∣a∣=9&(xa+yb)⋅(6ya−18xb)=0 ⇒6xy∣aˉ∣2−18x2(a⋅b)+6y2(a⋅b)−18xy∣b∣2=0 ⇒6xy(∣a∣2−3∣b∣2)+(a⋅b)(y2−3x2)=0 This should hold ∀x,y∈R×R ∴∣a∣2=3∣b∣2&(a⋅b)=0 Now ∣a×b∣2=∣a∣2∣b∣2−(a⋅b)2 =∣a∣2⋅3∣a∣2 ∴∣a×b∣=3∣a∣2=381=273