2V+V×(i^+2j^)=(2i^+k^)
(i)
or 2V⋅(i^+2j^)=2
or ∣V⋅(i^+2j^)∣2=1
or ∣V∣2⋅∣i^+2j^∣2cos2θ=1 (θ is the angle between V and i^+2j^)
or ∣V∣25(1−sin2θ)=1
or ∣V∣25sin2θ=5∣V∣2−1
(ii)
From Eq. (i) we have ∣2V+V×(i^+2j^)∣2=∣2i^+k^∣2
or 4∣V∣2+∣V×(i^+2j^)∣2=5
or 4∣V∣2+∣V∣2∣i^+2j^∣2sin2θ=5
or 4∣V∣2+5∣V∣2sin2θ=5
or 4∣V∣2+5∣V∣2−1=5
or 9∣V∣2=6
or 3∣V∣=6
or 6=m ∴m=6