Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a relation R on the set N of natural numbers be defined as ( x , y ) Leftrightarrow x 2-4 xy +3 y 2=0 ∀ x , y ∈ N. The relation R is
Q. Let a relation
R
on the set
N
of natural numbers be defined as
(
x
,
y
)
⇔
x
2
−
4
x
y
+
3
y
2
=
0∀
x
,
y
∈
N
. The relation
R
is
1779
171
Report Error
A
Reflexive
B
Symmetric
C
Transitive
D
An equivalence relation
Solution:
Given,
(
x
,
y
)
⇔
x
2
−
4
x
y
+
3
y
2
=
0
Or
(
x
,
y
)
⇔
(
x
−
y
)
(
x
−
3
y
)
=
0
(i) Reflexive
x
R
x
⇒
(
x
−
x
)
(
x
−
3
x
)
=
0
∴
It is reflexive.
(ii) Symmetric
Now,
x
R
y
⇔
(
x
−
y
)
(
x
−
3
y
)
=
0
And,
y
R
x
⇔
(
y
−
x
)
(
y
−
3
x
)
=
0
⇒
x
R
y
=
y
R
x
∴
It is not symmetric.
Similarly, it is not transitive.