Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ar=r 4Cr , br=(4 - r)( )4Cr , Ar=[ ar 2 3 br ] and A= displaystyle ∑ r = 04Ar , then the value of |A| is equal to
Q. Let
a
r
=
r
4
C
r
,
b
r
=
(
4
−
r
)
(
)
4
C
r
,
A
r
=
[
a
r
3
2
b
r
]
and
A
=
r
=
0
∑
4
A
r
, then the value of
∣
A
∣
is equal to
2523
192
NTA Abhyas
NTA Abhyas 2020
Matrices
Report Error
Answer:
874
Solution:
A
=
r
=
0
∑
4
A
r
=
⎣
⎡
r
=
0
∑
4
r
4
C
r
r
=
0
∑
4
3
r
=
0
∑
4
2
r
=
0
∑
4
(
4
−
r
)
4
C
r
⎦
⎤
Now,
r
=
0
∑
4
r
4
C
r
=
r
=
0
∑
4
(
4
−
r
)
4
C
r
=
4
×
2
3
=
2
5
A
=
[
32
15
10
32
]
∣
A
∣
=
1024
−
150
=
874