Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let an n=0∞ be a sequence such that a 0= a 1=0 and a n +2=2 a n +1- a n +1 for all n ≥ 0. Then, displaystyle∑ n =2∞ ( a n /7 n ) is equal to
Q. Let
{
a
n
}
n
=
0
∞
be a sequence such that
a
0
=
a
1
=
0
and
a
n
+
2
=
2
a
n
+
1
−
a
n
+
1
for all
n
≥
0
. Then,
n
=
2
∑
∞
7
n
a
n
is equal to
3219
158
JEE Main
JEE Main 2022
Sequences and Series
Report Error
A
343
6
18%
B
216
7
24%
C
343
8
32%
D
216
49
26%
Solution:
a
2
=
1
,
a
3
=
3
a
4
=
6
a
n
=
2
n
(
n
−
1
)
S
=
n
=
2
∑
∞
2
(
7
n
)
n
(
n
−
1
)
S
=
7
2
1
+
7
3
3
+
7
4
6
+
7
5
10
+
7
5
15
+
……
7
S
=
7
3
1
+
7
4
3
+
7
5
6
+
7
6
10
+
…
6
7
S
=
7
2
1
+
7
3
2
+
7
4
3
+
7
5
4
+
…
6
7
2
S
=
7
3
1
+
7
4
2
+
7
5
3
+
…
6
7
S
⋅
7
6
=
7
2
1
+
7
3
1
+
…
=
1
−
1/7
1/
7
2
6
×
6
7
2
S
=
⋅
7
×
6
1
S
=
6
3
7
=
216
7
Alternate
a
n
+
2
=
2
a
n
+
1
−
a
n
+
1
⇒
7
n
+
2
a
n
+
2
=
7
2
7
n
+
1
a
n
+
1
−
49
1
7
n
a
n
+
7
n
+
2
1
⇒
n
=
2
∑
∞
7
n
+
2
a
n
+
2
=
7
2
n
=
2
∑
∞
7
n
+
1
a
n
+
1
−
49
1
n
=
2
∑
∞
7
n
a
n
+
n
=
2
∑
∞
7
n
+
2
1
Let
n
=
2
∑
∞
7
n
a
n
=
p
⇒
(
p
−
7
2
a
2
−
7
3
a
3
)
=
7
2
(
p
−
7
2
a
2
)
−
49
1
p
+
1
−
7
1
1/
7
4
∵
a
2
=
1
,
a
3
=
3
⇒
p
−
49
1
−
343
3
=
7
2
p
−
7
3
2
−
49
p
+
6.
7
3
1
⇒
p
=
216
7