−1∫n(1+2x+3x2+…+nxn−1)dx [x+2x2+32x3+…+n2xn]−1n (n+22n2+32n3+…+−n2nn) −(−1+221−321+421+…+n2(−1)n) an=(n+1)+221(n2−1)+321(n3+1) +…+n21(nn−(−1)n)
if n=1⇒an=2∈/(2,30)
if n=2 ⇒an=(2+1)+221(22−1)=3+43<30
if n=3 ⇒an=(3+1)+41(8)+91(28)=11+928<30
If n=4 ⇒an=(4+1)+41(16−1)+91(64+1)+161 =5+415+965+16255>30
Test {2,3} sum of elements 5