Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let an=∫ limits0π / 2(1- sin t)n sin 2 t d t then undersetn arrow ∞ textLim displaystyle∑n=1n (an/n) is equal to
Q. Let
a
n
=
0
∫
π
/2
(
1
−
sin
t
)
n
sin
2
t
d
t
then
n
→
∞
Lim
n
=
1
∑
n
n
a
n
is equal to
124
114
Integrals
Report Error
A
1/2
B
1
C
4/3
D
3/2
Solution:
a
n
=
0
∫
π
/2
(
1
−
sin
t
)
n
sin
2
t
d
t
Let
1
−
sin
t
=
u
⇒
−
cos
t
d
t
=
d
u
a
n
=
2
0
∫
1
u
n
(
1
−
u
)
d
u
=
2
(
0
∫
1
u
n
d
u
−
0
∫
1
u
n
+
1
d
u
)
=
2
(
n
+
1
1
−
n
+
2
1
)
hence
n
a
n
=
2
(
n
(
n
+
1
)
1
−
n
(
n
+
2
)
1
)
n
→
∞
Lim
n
=
1
∑
n
n
a
n
=
2
(
∑
(
n
1
−
n
+
1
1
)
−
2
1
∑
(
n
1
−
n
+
2
1
)
)
=
2
n
=
1
∑
n
(
n
1
−
n
+
1
1
)
−
n
=
1
∑
n
(
n
1
−
n
+
2
1
)
=
2
(
1
)
−
[
(
1
−
3
1
)
+
(
2
1
−
4
1
)
+
(
3
1
−
5
1
)
+
…
..
]
=
2
−
2
3
=
2
1