Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A= n ∈ N mid n2 ≤ n+10,000 B= 3 k+1 mid k ∈ N and C= 2 k mid k ∈ N then the sum of all the elements of the set A ∩(B-C) is equal to
Q. Let
A
=
{
n
∈
N
∣
n
2
≤
n
+
10
,
000
}
,
B
=
{
3
k
+
1
∣
k
∈
N
}
and
C
=
{
2
k
∣
k
∈
N
}
, then the sum of all the elements of the set
A
∩
(
B
−
C
)
is equal to ___
1049
169
JEE Main
JEE Main 2021
Sets
Report Error
Answer:
832
Solution:
B
−
C
≡
{
7
,
13
,
19
,
…
97
,
…
}
Now,
n
2
−
n
≤
100
×
100
⇒
n
(
n
−
1
)
≤
100
×
100
⇒
A
=
{
1
,
2
,
……
,
100
}
So,
A
∩
(
B
−
C
)
=
{
7
,
13
,
19
,
……
,
97
}
Hence, sum
=
2
16
(
7
+
97
)
=
832