Q.
Let An be the sum of the first n terms of the geometric series 704+2704+4704+8704+… and Bn be the sum of the first n terms of the geometric series 1984−21984+41984+81984+… If An=Bn, then the value of n is (where n∈N ).
An=704+2704+4704+… to n terms =1−21704(1−(21)n)=704×2(1−(21)n) Bn=1984−21984+41984… to n terms =1−(2−1)1984(1−(2−1)n)=1984×32(1−(2−1)n)
Now, An=Bn ⇒704×2(1−(21)n) =1984×32×(1−(2−1)n) ⇒33−31=33(21)n−31(2−1)n ⇒2n+1=33−31(−1)n ⇒n=5