Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a= min x2+2 x+3, x ∈ R and b= displaystyle lim θ arrow 0 (1- cos θ/θ2). The value of displaystyle ∑r=0n ar . bn-r is
Q. Let
a
=
min
{
x
2
+
2
x
+
3
,
x
∈
R
}
and
b
=
θ
→
0
lim
θ
2
1
−
cos
θ
. The value of
r
=
0
∑
n
a
r
.
b
n
−
r
is
1482
181
Limits and Derivatives
Report Error
A
3
×
2
n
2
n
+
1
−
1
B
3
×
2
n
2
n
+
1
+
1
C
3
×
2
n
4
n
+
1
−
1
D
None of these
Solution:
a
=
min
{
x
2
+
2
x
+
3
,
x
∈
R
}
=
min
{
(
x
+
1
)
2
+
2
,
x
∈
R
}
=
2
and
b
=
θ
→
0
lim
θ
2
1
−
cos
θ
=
θ
→
0
lim
θ
2
(
1
+
cos
θ
)
(
1
−
cos
θ
)
(
1
+
cos
θ
)
=
2
1
∴
r
=
0
∑
n
a
r
⋅
b
n
−
r
=
b
n
r
=
0
∑
n
(
b
a
)
r
=
(
2
1
)
n
r
=
0
∑
n
(
4
)
r
=
2
n
1
(
1
+
4
+
4
2
+
…
+
4
n
)
=
2
n
1
⋅
1
⋅
(
4
−
1
4
n
+
1
−
1
)
=
3
⋅
2
n
4
n
+
1
−
1