Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A= beginpmatrix m n p q endpmatrix, d=|A| ≠ 0 and |A-d( operatornameAdj A)|=0. Then
Q. Let
A
=
(
m
p
n
q
)
,
d
=
∣
A
∣
=
0
and
∣
A
−
d
(
Adj
A
)
∣
=
0
. Then
613
126
JEE Main
JEE Main 2023
Determinants
Report Error
A
1
+
d
2
=
m
2
+
q
2
100%
B
1
+
d
2
=
(
m
+
q
)
2
0%
C
(
1
+
d
)
2
=
m
2
+
q
2
0%
D
(
1
+
d
)
2
=
(
m
+
q
)
2
0%
Solution:
A
=
[
m
p
n
q
]
,
∣
A
−
d
(
adj
A
)
∣
=
0
⇒
∣
A
−
d
(
adj
A
)
∣
=
∣
∣
[
m
p
n
q
]
−
d
[
q
−
p
−
n
m
]
∣
∣
=
∣
∣
m
−
q
d
p
(
1
+
d
)
n
(
1
+
d
)
q
−
m
d
∣
∣
=
0
⇒
(
m
−
q
d
)
(
q
−
m
d
)
−
n
p
(
1
+
d
)
2
=
0
⇒
m
q
−
m
2
d
−
q
2
d
+
m
q
d
d
2
−
n
p
(
1
+
d
)
2
=
0
⇒
(
m
q
−
n
p
)
+
d
2
(
m
q
−
n
p
)
−
d
(
m
2
+
q
2
+
2
n
p
)
=
0
⇒
d
+
d
3
−
d
(
(
m
+
q
)
2
−
2
d
)
=
0
⇒
1
+
d
2
=
(
m
+
q
)
2
−
2
d
⇒
(
1
+
d
)
2
=
(
m
+
q
)
2
∴
Opt
i
o
n
(
1
)
is correct.