Q.
Let A lies on 3x−4y+1=0,B lies on 4x+3y−7=0 and C is (−2,5). If ABCD is a rhombus, then the locus of D is a conic whose length of the latus rectum is equal to
1968
210
NTA AbhyasNTA Abhyas 2020Conic Sections
Report Error
Solution:
Let, D(h,k) C(−2,5) lies on 4x+3y−7=0 ⇒BC is perpendicular to 3x−4y+1=0 ⇒DA is perpendicular to 3x−4y+1=0 ⇒ Because DA=DC so, the distance of D from 3x−4y+1=0 is equal to DC ⇒(h+2)2+(k−5)2=∣∣53h−4k+1∣∣ ⇒25((x+2)2+(y−5)2)=(3x−4y+1)2
Which represents parabola with focus (−2,5) and directrix is 3x−4y+1=0 ⇒ Length of the latus rectum is 2∣∣5−6−20+1∣∣=10 units