Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A is a matrix of order 3× 3 defined as A=[ai j]3 × 3 , where ai j= undersetx arrow 0l i m(1 - c o s (i x)/s i n (i x) t a n (j x))(∀ 1 ≤ i , j ≤ 3) , then A2 is equal to
Q. Let
A
is a matrix of order
3
×
3
defined as
A
=
[
a
ij
]
3
×
3
, where
a
ij
=
x
→
0
l
im
s
in
(
i
x
)
t
an
(
j
x
)
1
−
cos
(
i
x
)
(
∀1
≤
i
,
j
≤
3
)
, then
A
2
is equal to
1246
149
NTA Abhyas
NTA Abhyas 2022
Report Error
A
A
B
2
3
A
C
3
2
A
D
4
1
A
Solution:
Applying L' Hospital rule, we get,
a
ij
=
2
1
j
i
A
=
⎣
⎡
2
1
1
2
3
4
1
2
1
4
3
6
1
3
1
2
1
⎦
⎤
=
2
1
⎣
⎡
1
2
3
2
1
1
2
3
3
1
3
2
1
⎦
⎤
A
2
=
4
1
⎣
⎡
1
2
3
2
1
1
2
3
3
1
3
2
1
⎦
⎤
⎣
⎡
1
2
3
2
1
1
2
3
3
1
3
2
1
⎦
⎤
=
4
1
⎣
⎡
3
6
9
2
3
3
2
9
3
3
3
6
3
⎦
⎤
=
2
3
A