Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a=Im((1+z2/2iz)), where z is any non-zero complex number. The set A= a:|z|=1 and z≠±1 is equal to:
Q. Let
a
=
I
m
(
2
i
z
1
+
z
2
)
,
where
z
is any non-zero complex number.
The set
A
=
{
a
:
∣
z
∣
=
1
an
d
z
=
±
1
}
is equal to:
5381
186
JEE Main
JEE Main 2013
Complex Numbers and Quadratic Equations
Report Error
A
(
−
1
,
1
)
35%
B
[
−
1
,
1
]
17%
C
[
0
,
1
)
35%
D
(
−
1
,
0
]
13%
Solution:
Let
z
=
x
+
i
y
⇒
z
2
=
x
2
−
y
2
+
2
i
x
y
Now,
2
i
z
1
+
z
2
=
2
i
(
x
+
i
y
)
1
+
x
2
−
y
2
+
2
i
x
y
=
2
i
x
−
2
y
(
x
2
−
y
2
+
1
)
+
2
i
x
y
=
−
2
y
+
2
i
x
(
x
2
−
y
2
+
1
)
+
2
i
x
y
×
−
2
y
−
2
i
x
−
2
y
−
2
i
x
=
2
(
x
2
+
y
2
)
y
(
x
2
−
y
2
−
1
)
+
x
(
x
2
+
y
2
+
1
)
i
a
=
2
(
x
2
+
y
2
)
x
(
x
2
+
y
2
+
1
)
Since,
∣
z
∣
=
1
⇒
x
2
+
y
2
=
1
⇒
x
2
+
y
2
=
1
∴
a
=
2
×
1
x
(
1
+
1
)
=
x
Also
z
=
1
⇒
x
+
i
y
=
1
∴
A
=
(
−
1
,
1
)