Since, v is the coplanar to a and b ∴v=a+tb−1 =(i+j+k)+t(i−j+k) ⇒r=(1+t)i+(1−t)j+(1+t)k..... (i) ⇒r=(1+t)l+(1−t)j+(1+t)k (given) ⇒∣c∣v⋅c=31 ⇒3∣(1+t)1−1(1−t)−1(1+t)∣=31 ⇒1+t−1+t−1−t=1 ⇒t=2
On putting the value of t in Eq. (i), we get r=3i+(−1)j+(3)k ⇒v=3i−j+3k