Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a = hat i +2 hat j - hat k and b = hat i + hat j + hat k . If p is a unit vector such that [abp] is maximum. then p =
Q. Let
a
=
i
^
+
2
j
^
−
k
^
and
b
=
i
^
+
j
^
+
k
^
.
If
p
is a
unit vector such that
[
ab
p
]
is maximum. then
p
=
1342
249
TS EAMCET 2019
Report Error
A
6
1
(
i
^
−
2
j
^
+
k
^
)
B
3
1
(
i
^
+
j
^
−
k
^
)
C
14
1
(
3
i
^
−
2
j
^
−
k
^
)
D
14
1
(
i
^
+
2
j
^
+
3
k
^
)
Solution:
Given,
a
=
i
^
+
2
j
^
−
k
^
,
b
=
i
^
+
j
^
+
k
^
a
×
b
=
∣
∣
i
^
1
1
j
^
2
1
k
^
−
1
1
∣
∣
=
3
i
^
−
2
j
^
−
k
^
[
a
b
p
]
=
p
⋅
(
a
×
b
)
=
p
⋅
(
3
i
^
−
2
j
^
−
k
^
)
[
a
b
p
]
=
∣
P
∣∣
a
×
b
∣
cos
θ
[
a
b
p
]
is maximum
∴
p
=
∣
a
×
b
∣
a
×
b
p
=
14
1
(
3
i
^
−
2
j
^
−
k
^
)