Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A denote the matrix [0&i i&0], where i2=-1, and let I denote the identity matrix [1&0 0&1] Then, I+A+A2+ dots+A2010 is
Q. Let A denote the matrix
[
0
i
i
0
]
, where
i
2
=
−
1
, and let I denote the identity matrix
[
1
0
0
1
]
Then,
I
+
A
+
A
2
+
⋯
+
A
2010
is
1518
209
KVPY
KVPY 2010
Report Error
A
[
0
0
0
0
]
B
[
0
i
i
0
]
C
[
1
i
i
1
]
D
[
−
1
0
0
−
1
]
Solution:
We have,
A
=
[
0
i
i
0
]
,
A
2
=
[
0
i
i
0
]
[
0
i
i
0
]
=
[
i
2
0
0
i
2
]
=
[
−
1
0
0
−
1
]
=
−
[
1
0
0
1
]
=
−
I
A
3
=
A
2
⋅
A
=
[
−
1
0
0
−
1
]
[
0
i
i
0
]
=
[
0
−
i
−
i
0
]
=
−
[
0
i
i
0
]
=
−
A
and
A
4
=
A
2
⋅
A
2
=
(
−
I
)
(
−
I
)
=
I
=
[
1
0
0
1
]
∴
I
+
A
+
A
2
+
A
3
+
A
4
+
A
5
+
…
+
A
2008
+
A
2009
+
A
2010
=
I
+
A
+
A
2
+
A
3
+
A
4
[
I
+
A
+
A
2
+
A
3
]
+
…
+
A
2008
[
I
+
A
+
A
2
]
=
0
+
0
+
…
+
[
I
+
A
+
A
2
]
[
∵
I
+
A
+
A
2
+
A
3
=
0
]
∴
I
+
A
+
A
2
=
[
1
0
0
1
]
+
[
0
i
i
0
]
+
[
−
1
0
0
−
1
]
=
[
0
i
i
0
]