Q.
Let a cubic polynomial be f(x)=3x3−x2+ax+2. If all the values of a for which f(x) has a positive point of maximum also satisfy the inequality 3x2−(b+1)x+b(b−2)<0 and value of b lies in
[p,q], then find the value of (p+q).
For a positive point of maximum both distinct roots of f′(x)=0 should be greater than zero. ∴f′(x)=x2−2x+a Θ both distinct greater than zero
(i) D>0⇒4−4a>0⇒a<1
(ii) f′(0)>0⇒a>0
(iii)2⋅31−(−1)=23>0 ∴a∈(0,1) Θa∈(0,1) satisfying 3x2−(b+1)x+b(b−2)<0 ∴b(b−2)≤0⇒0≤b≤2 and 3−(b+1)+b(b−2)≤0 ⇒b2−3b+2≤0⇒1≤b≤2 ∴b∈[1,2] ∴p+q=3