Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let A =[cos2 θ&sin θ cos θ cos θ sin θ &sin2 θ ] and B = [cos2 φ &sin φ cos φ cos φ sin φ&sin2 φ] ,then AB = 0,if
Q. Let A =
[
co
s
2
θ
cos
θ
s
in
θ
s
in
θ
cos
θ
s
i
n
2
θ
]
and
B
=
[
co
s
2
ϕ
cos
ϕ
s
in
ϕ
s
in
ϕ
cos
ϕ
s
i
n
2
ϕ
]
,then
A
B
=
0
,if
2625
201
Matrices
Report Error
A
θ
=
n
ϕ
,
n
=
0
,
1
,
2
,
....
10%
B
θ
+
ϕ
=
nπ
,
n
=
0
,
1
,
2
,
....
25%
C
θ
=
ϕ
+
(
2
n
+
1
)
2
π
,
n
=
0
,
1
,
2
,
....
50%
D
θ
=
ϕ
+
2
nπ
,
n
=
0
,
1
,
2
,
....
15%
Solution:
AB =
[
co
s
2
θ
cos
θ
s
in
θ
s
in
θ
cos
θ
s
i
n
2
θ
]
[
co
s
2
ϕ
cos
ϕ
s
in
ϕ
s
in
ϕ
cos
ϕ
s
i
n
2
ϕ
]
.
=
[
co
s
2
θ
co
s
2
ϕ
+
s
in
θ
cos
ϕ
cos
θ
s
in
ϕ
co
s
2
ϕ
cos
θ
s
in
θ
+
s
i
n
2
θ
s
in
ϕ
cos
ϕ
co
s
2
θ
s
in
ϕ
cos
ϕ
+
s
i
n
2
ϕ
s
in
θ
cos
θ
cos
θ
s
in
θ
s
in
ϕ
cos
ϕ
+
s
i
n
2
θ
s
i
n
2
ϕ
]
=
[
cos
θ
cos
ϕ
cos
(
θ
−
ϕ
)
s
in
θ
cos
ϕ
cos
(
θ
+
ϕ
)
s
in
ϕ
cos
θ
cos
(
θ
+
ϕ
)
s
in
θ
s
in
ϕ
cos
(
θ
−
ϕ
)
]
∴
A
B
=
0
⇒
cos
(
θ
−
ϕ
)
=
0
⇒
cos
(
θ
−
ϕ
)
=
cos
(
2
n
+
1
)
2
π
⇒
θ
=
(
2
n
+
1
)
2
π
+
ϕ
,where
n
=
0
,
1
,
2
,
......