Given α be the distance between lines x−y+2=0 and x−y−2=0. ∴α=1+1​∣2+2∣​=2​∣4∣​=22​
and β be the distance between the lines 4x−3y−5=0 and 4x−3y+1/2=0 ∴β=(4)2+(3)2​∣5+21​∣​ =225​∣11∣​=1011​
Now, βα​=11/1022​​ ⇒βα​=11202​​ ⇒202​β=11α