Q.
Let A be the centre of the circle x2+y2−2x−4y−20=0. If the tangents drawn at the point B(1,7) and D(4,−2) on the given circle meet at the point C, then the area of the quadrilateral ABCD is
Equation of circle x2+y2−2x−4y−20=0
Centre of circle (1,2), radius =5
Equation of tangents at (1,7) is (1)x+7y−(x+1)−2(y+7)−20=0 ⇒x+7y−x−1−2y+7−20=0 ⇒5y=35 ⇒y=7…(i)
Equation of tangent at (4,−2) 4x−2y−(x+4)−2(y−2)−20=0 ⇒4x−2y−x−4−2y+4−20=0 ⇒3x−2y=20…(ii)
Tangents y=7 and 3x−2y=20 intersect at C. So, coordinate of C(16,7)
Length of BC=(16−1)2+(7−7)2 BC=15
Length of CD=(16−4)2+(7+2)2=144+81 CD=15
So, area of ABCD= area of ΔABC+ area of ΔACD =21×15×5+21×15×5=75