Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a be maximum value of (3 cos θ-4 sin θ) and θ ≠ (n π/2). If α=a sin 2 θ ⋅ cos 3 θ and β=a sin 3 θ ⋅ cos 2 θ, then √((α2+β2)5/(α β)4)=
Q. Let
a
be maximum value of
(
3
cos
θ
−
4
sin
θ
)
and
θ
=
2
nπ
. If
α
=
a
sin
2
θ
⋅
cos
3
θ
and
β
=
a
sin
3
θ
⋅
cos
2
θ
, then
(
α
β
)
4
(
α
2
+
β
2
)
5
=
1547
211
TS EAMCET 2020
Report Error
A
5
sin
2
θ
cos
2
2
θ
B
−
3
sin
θ
C
5
D
16
Solution:
Maximum value of
3
cos
θ
−
4
sin
θ
∴
a
=
3
2
+
(
−
4
)
2
=
5
α
=
5
sin
2
θ
cos
3
θ
β
=
5
sin
3
θ
cos
2
θ
Now,
α
2
+
β
2
=
5
2
(
sin
4
θ
cos
6
θ
+
sin
6
θ
cos
4
θ
)
=
25
(
cos
2
θ
+
sin
2
θ
)
sin
4
θ
cos
4
θ
=
25
sin
4
θ
cos
4
θ
∴
(
α
2
+
β
2
)
5
=
(
25
sin
4
θ
cos
4
θ
)
5
⇒
(
α
2
+
β
2
)
5/2
=
(
5
sin
2
θ
cos
2
θ
)
5
α
β
=
25
sin
5
θ
cos
5
θ
⇒
(
α
β
)
4
(
α
2
+
β
2
)
5
=
(
5
2
s
i
n
5
θ
c
o
s
5
θ
)
2
(
5
s
i
n
2
θ
c
o
s
2
θ
)
5
=
5
4
s
i
n
10
θ
c
o
s
10
θ
5
5
s
i
n
10
θ
c
o
s
10
θ
=
5