Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let a be an integer such that displaystyle lim x arrow 7 (18-[1-x]/[x-3 a]) exists, where [t] is greatest integer ≤ t. Then a is equal to :
Q. Let a be an integer such that
x
→
7
lim
[
x
−
3
a
]
18
−
[
1
−
x
]
exists, where [t] is greatest integer
≤
t
. Then a is equal to :
1360
156
JEE Main
JEE Main 2022
Limits and Derivatives
Report Error
A
-6
17%
B
-2
17%
C
2
33%
D
6
33%
Solution:
x
→
7
lim
[
x
]
−
3
a
18
−
[
1
−
x
]
L.H.L.
x
→
7
−
lim
[
x
]
−
3
a
18
−
[
1
−
x
]
=
6
−
3
a
18
−
(
−
6
)
=
6
−
3
a
24
R.H.L.
x
→
7
+
lim
[
x
]
−
3
a
18
−
[
1
−
x
]
=
7
−
3
a
18
−
(
−
7
)
=
7
−
3
a
25
Now L.H.L. = R.H.L.
6
−
3
a
24
=
7
−
3
a
25
⇒
168
−
72
a
=
150
−
75
a
⇒
18
=
−
3
a
⇒
a
=
−
6